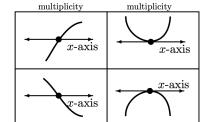

Name:

3.5 - Limits at infinity

Polynomial End Behavior


Rational End Behavior

n =degree of top polynomial m =degree of bottom polynomial

case	as $x \to \pm \infty$
n < m	$f(x) \to y = 0$
n = m	$f(x) \to y = \frac{a_n}{b_m}$
n > m	$f(x) \to q(x) \mid \overline{p(x)}$ (divide, ignore remainder)

x-intercept behavior zero has odd zero has even multiplicity multiplicity

3 zeros of Rational Functions

R(0)	y intercept
All real x that make top $p(x) = 0$	x intercepts
All real x that make bottom $q(x) = 0$	vertical asymptotes

1. Let
$$f(x) = 4x^2 + 2x + 3$$

(a)
$$\lim_{x \to \infty} \frac{f(x)}{2x}$$

(b)
$$\lim_{x \to \infty} \frac{f(x)}{2x^2}$$

(c)
$$\lim_{x \to \infty} \frac{f(x)}{2x^3}$$

2. Find the end behavior of the following functions:

(a)
$$\lim_{x \to \infty} \frac{\sin x}{x}$$

(b)
$$\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}}$$

(c)
$$\lim_{x \to -\infty} \left(\frac{5}{x} - \frac{x}{3} \right)$$

(d)
$$\lim_{x \to \infty} \frac{|3x+2|}{x-2}$$

(e)
$$\lim_{x \to -\infty} \frac{|3x+2|}{x-2}$$

- $3. \lim_{x \to \infty} x \tan \frac{1}{x}$
 - (a) Let $x = \frac{1}{t}$ and restate the limit as $t \to 0^+$:
 - (b) Make it all about sine and cosine:
 - (c) Recall a theorem from chapter 1: $\lim_{x\to 0} \frac{\sin x}{x} = 1...$

3.6 Analyze and sketch by finding intercepts, extrema, points of inflection, and asymptotes

1.
$$y = -\frac{1}{3}(x^3 - 3x + 2) = \frac{(x-1)^2(x+2)}{-3}$$

- (a) (intercepts and vertical asymptotes)
- (b) end behavior ($\lim_{x\to\pm\infty}$ and inspecting degree)
- (c) (first derivative for rel. extrema)
- (d) (second derivative for POI and concavity)

- $2. \ y = 6x^2 3x^4$
 - (a) (intercepts and vertical asymptotes)
 - (b) end behavior ($\lim_{x\to\pm\infty}$ and inspecting degree)
 - (c) (first derivative for rel. extrema)
 - (d) (second derivative for POI and concavity)

- 3. $y = (x-1)^{2/3}$
 - (a) (intercepts and vertical asymptotes)

(b) end behavior ($\lim_{x\to\pm\infty}$ and inspecting degree)

(c) (first derivative for rel. extrema)

(d) (second derivative for POI and concavity)